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The expression for the probability distribution of X-ray intensities is obtained for a non-centrosym- 
metric crystal possessing an approximate centre of symmetry and from this the acentric and centric 
distributions of Wilson are deduced as limiting cases. Theoretical expressions for the variance, 
test ratio 0 and moments of the normalized intensity z are also obtained in terms of the parameter 
(IArl) which is a measure of the degree of centrosymmetry. From the theoretical results it appears that 
the non-centrosymmetric nature of such a crystal could be detected by statistical tests, provided ac- 
curate z values are available and reflexions with high (sin 0/2) values are used for the test. 

Introduction 

Statistical tests for centrosymmetry cenducted with the 
basic centric and acentric distributions of Wilson 
(1949) for choosing the correct space group from the 
two possible alternatives Cc and C2/c for dibenzyl di- 
sulphide have not led to any conclusive results (van 
Dijk & Visser, 1971 ; Einspahr & Donohue, 1971 ; Lee, 
1971), though later Srinivasan & Vijayalakshmi (1972; 
this paper will be briefly referred to as SV, 1972) have 
assigned the space group C2/c by the X-ray anomalous 
scattering method. The failure of the statistical tests 
in this case has been attributed to the possibility that 
the mean deviation ([Ar[) of atomic positions from an 
approximate centre of symmetry (if the crystal were 
really non-centrosymmetric) might be vely small, say 
(IArl ) --- 0"05 A (SV, 1972). The question that nat- 
urally arises now is whether it is possible or not to as- 
certain by statistical tests the absence of an exact centre 
of symmetry in a non-centrosymmetric crystal pos- 
sessing an approximate centre of symmetry. This prob- 
lem has been qualitatively studied by Srinivasan, Swa- 
minathan & Chacko (1972) by plotting the probability 
density function (abbreviated as pdf in this paper) of 
the normalized structure amplitude y from the values 
ofy  calculated for a number of hypothetical two-dimen- 
sional non-centrosymmetric structures which have been 
obtained from a centrosymmetric structure by de- 
stroying the centre of symmetry by the introduction 
of random coordinate shifts. Making use of these em- 
pirical distributions, these workers have concluded that 
statistical tests are unlikely to be useful in confirming 
the absence of an exact centre of symmetry in a non- 
centrosymmetric crystal with a high degree of centro- 
symmetry. It may be noted here that this conclusion 
has been arrived at from 'experimental' P(y) curves 
with an inherent scatter of points. Further it is not 
clear in quantitative terms how the degree of centro- 
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symmetry affects the P(y) curve and other statistical 
criteria such as the moments of the normalized intensity 
z, the variance of z, the test ratio 0 etc. In this paper 
we shall therefore derive the probability distribution 
of y for such a non-centrosymmetric crystal by a rig- 
orous theory based on the central-limit theorem. This 
procedure is quite analogous to the one adopted by 
Wilson (1949) for deriving the basic centric and acen- 
tric distributions for ideally centrosymmetlic and ideal- 
ly non-centrosymmetric crystals respectively. The the- 
oretical distribution function P(y) and the quantities 
v(z), (z n) and 0 derived in this paper are found to 
depend on the parameter (Izlrl) which, being the mean 
deviation of the atomic positions from the approximate 
centre of symmetry, is a good measure of the degree 
of centrosymmetry. It may be noted here that the dis- 
tribution P(y) obtained in this paper is general in the 
sense that it obtains the centric and acentric distribu- 
t ionst  of Wilson as limiting cases (see Discussion). 

Derivation of the probability distribution of y 

Consider a non-centrosymmetric crystal (space group 
P 1) containing a sufficiently large number (N) of atoms 
of similar scattering power in the unit cell. Suppose that 
the structure has an approximate centre of symmetry. 
That is, we can imagine the N atoms in the unit cell 
to be put in two groups containing an equal number 
(N/2) of atoms such that if one group of atoms is at 
locations rj ( j =  1 to N/2), the positions of the atoms 
in the other groups related by the approximate centre 
of symmetry:I: could be written as - r j + A r  I ( j =  1 to 
N/2). Evidently the Arj's are independent random vec- 

t The pdf of the normalized structure amplitude y for the 
centric and acentric distributions of Wilson (1949) will be 
denoted by Pc(y) and PA(Y) in this paper. It is known that 
(Ramachandran & Srinivasan, 1959) Pc(y) = 1/2-]-~ exp ( -  y2/2) 
and PA(y)=2y exp ( - f ) .  The pdf ofy obtained in the present 
paper will be denoted by P(y). 

:I: We have chosen the origin to be at the position of the 
approximate centre of symmetry. The centre of gravity of the 
unit cell is such a point [see equation (10) of Wilson (1949)]. 
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tors and following Luzzati (1952) we shall assume that 
they obey a Gaussian distribution. 

The contribution to the real part of the structure 
factor of a reflexion H ( = h k l )  from all the N atoms 
in the unit cell can be written as 

N/2 N/2 

A = ~ f ] c o s  fo./+cos (-q~./+ V./)]=~ A./, say, (1) 
./=1 ./=1 

where we have used the simplifying notation 

~p./= 2ni l .  r./ and ~u s = 2ni l .  Ar./. (2) 

We shall derive the probability distribution of A for a 
given reflexion H by treating the rfs and AU's as 
random variables and this theoretical distribution is 
evidently identical with the one that could be obtained 
by varying H in the reciprocal space (Karle & Haupt- 
man, 1953) for a given crystal structure. 

Since the real part A [see equation (1)] is the sum of 
a large number of similarly distributed independent 
random variables A./, it follows from the central limit 
theorem that A is normally distributed with mean (A) 
and variance a~ given by 

( A ) = ~  (As) and a ~ = ~ a ~  (3) 

where a~ is the variance of A s. It is shown in the Ap- 
pendix that 

( A)=0  and a~= ( - ~ ) a ~  (4) 

where D and a~ are given by 
N 

D = ( c o s 2 n H .  Ar) and a ~ = ~ f ~ .  
./=1 

Thus the pdf of A can be written as 

(5) 

1 
P(A)= exp [-A2/(1 +D)a~,]. (6) 

1/ (1 + D)o - 

Since the pdf of B, the imaginary part of the structure 
factor, can be obtained by a similar procedure, we 
shall give only the essential steps. We thus have 

NI2 
B= ~..fj[sin ~0./+ sin ( -  ~0./+ V./)] 

./=1. 

N/2 

= ~ f ] s i n  ~0./(1-cos V./)+cos ~0./sin VA 
.]=1 

N/2 

= ~. B./, say, (7) 
./=1 

NI2 
(B )=  (s./) =0  (8) 

./=1 

a~= ~ ( B i ) =  a~ (9) 
J = l  

P(B)= exp [ - B 2 / ( 1 - D ) a ~ ] .  (10) 

The joint pdf of A and B will therefore be given by 

1 
P ( A , B ) =  

na~ U 1 - D 2 
1 A 2 B 2 

changing to plane polar coordinates ([FI, ~) where A = 
IFI cos ~ and B= [F[ sin e we obtain the joint pdf of 
IFI and e to be 

Ill P(IFI, )= 
u 4  I / 1 -D  2 

× e x p [ -  :12 [ c°s2  sin'  ] 
a--~N \ l + D  ÷ 1 - D ] J  

(12) 

where ]FI is the Jacobian of the transformation. The 
joint pdf of y(= [F[/aN) and a can be obtained from 
(12) to be 

P(y,a) = Y exp [_y2 ( 1 - D  cos 2a)]  
n V I _ D ~  l_D2  . (13) 

The pdf of y will therefore be given by 

P(y)=  P(y,a)dct 

_ 2y exp [-y2/(1-D2)]Io[Dy2/(1-D2)] (14) 
V ~ - D 2 

which yields the pdf of z (=y  2) to be 

1 
P (z) - _ _  exp [ -  z / ( 1 -  D2)]Io[Dz/(1- D2)] . (15) 

V - i -  D 2 

Making use of (14) we obtain the nth moment ofy to be 

2 y,,+l 

( : ) -  VI-z  o 
x exp [-y2/(1 - D2)]Io[Dy2/(1 - D2)]dy 

= F ( 2 - + l )  2F l (  n 2 - n  4 ' ' (16) 

which yields for n = 1 

(Y)= T 2F1(-¼, ¼; 1 ; D2). (17) 

Since z = y  2 it follows that (z")= (y2,>. Thus putting 
n=2,  4, 6 and 8 in (16) and expanding the hyper- 
geometric function we readily obtain 

( z ) = l ,  (z 2 ) = 2 + O  2 
(zS)=6+9D 2 and ( z 4 ) = 2 4 + 7 2 D 2 + 9 D  4. (18) 

The variance of z will be given by 

v(z) = (z 2) - (z)2= 1 + D 2. (19) 

Since the test ratio O of Wilson is given by Q= (y)2 
it can be readily obtained by making use of (17). 
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Discussion of  the theoretical results 

It is seen from the results of the previous section that 
the pdf of y and the quantities v(z), (z n) and Q all 
depend on the parameter D which has been defined 
in (5). It has been shown by Luzzati (1952) that the 
quantity D is related to the mean value (IArl) of the 
magnitudes of the random vectors Ar/s  through the 
relation 

[ -4  z~a (IArl)2HZ] (20) D = exp L -  

where H[ = (2 sin 0)/2] is the magnitude of the position 
vector of the reciprocal-lattice point hkl. The quantity 
(IArl), namely, 

l N/2 
( I A r l ) -  (N/2) j~l IArA (21) 

can be taken to be a quantitative measure of the degree 
of centrosymmetry, since ( [Ar] )=0 for an ideally cen- 
trosynunetric crystal and (IArl) is large for an ideally 
non-centrosymmetric crystal. It is seen from (20) that 

1 when ( [Ar l )=0  
D =  0 when (JAr]) is large (22) 

which shows that the centric and acentric distribu- 
tions of Wilson should follow from the general distri- 
bution (14) as limiting cases. It is seen from (14) that 

lira P ( y ) =  2y exp (_yZ) = PA(Y) (23) 
D---~0 
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Fig. 1. The probability density function of the normalized structure amplitude y for a non-centrosymmetric crystal with a degree of 
centrosymmetry for different values of (sin 0)/~. when (a) (IArl)=0"05 A, (b) (IArl)=0"1 A, (c) (IArl)=0"15 A and (d) (IArl) 
=0"2 A. 
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which is the pdf  o f y  for Wilson's acentric distribution. 
Making use of the asymptotic expansion for lo(x) for 
large x (see Abramowitz & Stegun, 1965) in (14) it is 
seen 

lim P ( y ) =  ]//2_ exp ( - y 2 / 2 ) =  Pc(Y) (24) 
D--+I 

which is the pdf  of y for Wilson's centric distribution. 
It is readily seen from (18) and (19) that the values of 
the other statistical parameters for the acentric and 
centric distributions of Wilson also follow from (18) 
and (19) under the limiting conditions D---~ 0 and 
D--~ 1 respectively. 

Since the pdf  of y has been found to be superior to 
the pdf  of z in the statistical tests for centrosymmetry 
(Ramachandran & Srinivasan, 1959) our discussions 
will be mainly based on the former. Since the P(y) 
function has an implicit dependence on H ( =  2 sin 0/2) 
and ([Ar[) [see (14) and (20)], P(y) curves have been 
drawn for (sin 0) /2=0.1 ,  0.2, 0.3, etc., for ( [Ar l )=  
0.05, 0.10, 0.15 and 0.2 A [see Fig. l(a)-l(d)].  

A common feature of the P(y) curve (see Fig. 1) for 
any given values of ([Ar[) ( ~ 0 )  and (sin 0)/2 is that 
it starts from the origin and, as y increases, rises steeply, 
crossing the Pc(Y) curve during its ascent at a point 
whose abscissa is y~, say. After this sharp rise and 
cross-over, it attains a maximum whose height exceeds 
that of even the PA(Y) curve. Thereafter the P(y) curve 
falls towards the Pc(Y) curve though it systematically 
lies above the latter in the region Yl <Y < 1.5. For  values 
of y greater than about 1.5 the P(y), Pc(Y) and Pa(Y) 
curves are all close to each other. It may be noted that 
the location of the cross-over point (i.e. the value of Y0 
actually depends on the values of (IAr[) and (sin 0)/2. 
For  a given value of ([Ar]), the P(y) curve tends more 
and more towards the PA(Y) curve as (sin 0)/2 in- 
creases. This tendency is markedly visible when (]Ar[) 
is greater than about 0.05 A. Thus it appears that  the 
P(y) test conducted with reflexions of large (sin 0)/2 
values could enable us to detect the absence of an exact 
centre of symmetry in a non-centrosymmetric crystal 
possessing an approximate centre of symmetry. It is 
obvious that the power of the test could be improved 
by collecting data with Mo Kc~ radiation. 

We have stated above that the P(y) curve for any 
given values of ( Idr l )  and (sin 0)/2 intersects the Pc(Y) 
curve at the point y~ and that it becomes close to the 
Pc(Y) curve for y > 1.5. Thus the area under the P(y) 
curve in the interval y~ <y_< 1.5 would be different for 
the Pc(Y) and P(y) curves and hence could be con- 
veniently used as a test parameter.* It is obvious that 

* Such a test has been referred to as modified N(z) test by 
Hargreaves & Gogoi (1966) and semi-cumulative function test 
by Srikrishnan (1971). We prefer the term interval probability 
test [see Davenport (1970) for the origin of this term] since 
what is calculated here is the interval probability Pr(Y,. <Y< 
1.5). Hargreaves & Gogoi (1966) have shown that this test is 
superior to the conventional N(z)and P(y) tests since it has 
the advantages of both, 

this area is nothing but the probability that  y takes 
a value in the interval y~-<y-< 1.5. The intervals and 
the corresponding probabilities depend on the values 
of (sin 0)/2 and ([Arl) and are summarized in Table 1. 
It may be noted here that the experimental values of the 
interval probabilities for any given crystal are given 
by the fractional number of reflexions with y values 
in the relevant intervals. Further it may be mentioned 
here that while the P(y) test does not require a priori 
the probable value of ([Ar[) (if any), it is required a 
priori for the interval probability test (see later). 

Table 1. The mean values of the higher moments of z as 
a function of (IAr l) over the ranges 0.35 < (sin 0)//l _< 

0.55 and 0.50 _< (sin 0)/2 < 1.0 

The subscripts 1 and 2 to the symbol ( - )  refer to the ranges 
0.35<(sin 0)/2<0.55 and 0.5 <(sin 0)/2< 1.0 in which the 
mean values of the moments of z are calculated. 
<lArl > <z2>, <z3>, <z4)z <zZ>2 (z3>2 (z4>2 
0.00" 3.0 15.0 105-0 3.0 15.0 105.0 
0.01 2.9 14.9 104.8 2.9 14.9 104.5 
0.02 2.9 14.9 104.3 2.9 14.8 103.5 
0.03 2-9 14.8 103.8 2.9 14.6 101.7 
0.04 2.9 14.8 103.0 2.9 14.4 99.3 
0.05 2.9 14-7 102.0 2.9 14.1 96.3 
0.06 2.9 14.5 100.7 2.8 13.7 92.8 
0.07 2-9 14.4 99.2 2-8 13.3 89.0 
0.08 2.9 14.2 97.5 2.7 12.9 84.8 
0.09 2.8 14.0 95-7 2.7 12.4 80.5 
0.10 2.8 13.8 93.7 2.6 12-0 76.1 
0.15 2.7 12.6 82-1 2.4 9.7 55.4 
0.20 2.5 11.2 69.3 2.2 7.9 40.4 
0.25 2.4 9.9 57.2 2.1 6.9 31.8 
0.30 2.3 8.7 47.0 2.0 6-4 27.4 
0.35 2.2 7-8 39.1 2.0 6.1 25.4 
0.40 2.1 7.1 33.5 2.0 6.0 24.6 
0.50 2.0 6.4 27.3 2.0 6.0 24.0 
0.60 2.0 6.1 25.0 2.0 6.0 24.0 
0.70 2.0 6.0 24.2 
0.80* 2.0 6.0 24.0 

* The values of the moments corresponding to ([Arl)=0 are 
the same as those for Wilson's centric distribution for large 
(IArl) (say, 0.8 A); they tend to the values for Wilson's acentric 
distribution. 

From equations (18) and (20) it is seen that the 
moments of z are also functions of (sin 0)/2 and 
([Ar[). The average values of these moments over the 
region 0.35 _< (sin 0)/2_< 0.55 and over the region 0.5 < 
(sin 0)/2_< 1.0 are given in Table 2 for various given 
values of ([Arl). While the former average is con- 
venient for data collected with Cu Kc~ radiation, the 
latter is suitable for the data collected with Mo Ke 
radiation. 

It may be noted that when the absence of an exact 
centre of symmetry in the case of any crystal suspected 
to have an approximate centre of symmetry could not 
be detected at the beginning of structure analysis, it 
is convenient to assume the higher symmetry and 
proceed with the structure determination (Parthasa- 
rathy, Sime & Speakman, 1969; Donohue, 1971). 
When the final refinement stage is reached one could 
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carry out the above P(y) and higher-moment  tests 
with the accurate  Fo data  which would then be avail- 
able. F r o m  a study of  the tendency of  the experimental 
P(y) functions obtained in the different ranges of  
(sin 0)/2 the absence of  the exact centre of  symmetry 
could be inferred and, further,  one could obtain a rough 
estimate of  the expected value of  IAr[. I f  such an 
estimate could be made  then the more  effective interval 
probabil i ty test could be performed. The methodology 
of  this test can be briefly summarized in the following 
steps: (i) Obtain the approximate  value of  (IArl)  (if 
any) by first conducting the P(y) and higher-moment  
tests. For  the purpose of  il lustration we shall take 
( I A r l ) >  _0 .1  A. (ii) Corresponding to this value* of  
(IArl) ,  obtain the values of  yl (which fix the intervals 
of  y as y~<y< 1.5) and the theoretical values of  the 
interval probabilities for (sin 0)/2 = 0.3, 0.4, etc., f rom 
Table 1 for  the crystals with an exact centre of  sym- 
metry and with an approximate  centre of  symmetry.  
(These are given against the rows named C and NC 
respectively in Table 1.) Thus if ( I A r l ) = 0 " l  A, then 
y1=0.12,  0.15, 0.19, etc., when (sin 0 ) /2=0 .3 ,  0.4 and 

* For a given (IArl), the quantity yl and the interval prob- 
ability P,(yl <_y< 1.5) depend on the value of (sin 0)/2. 

0"5, etc. (iii) Divide the reflexions into regions of  
(sin 0)/2 and obtain in each range the fractional num- 
ber of  reflexions with y values in the corresponding 
intervals Yl <Y < 1.5. For  example, if the total  number  
of  independent  reflexions in the region 0.45 < (sin 0)/2 
< 0.55 is n and if  of  these ni have their y values in the 
interval 0 . 1 9 < y <  1.5, then nJn represents the experi- 
mental  value of  the interval probabil i ty corresponding 
to (sin 0 ) / 2 = 0 . 5  and ( I d r l ) = 0 " l  /k. A compar ison of  
the experimental values of  the interval probabilit ies 
with the corresponding theoretical values in the various 
(sin 0)/2 ranges could enable us to identify the nature  
of  the crystal. It is to be noted here that  accurate in- 
tensity da ta  and accurate y values would be needed 
to conduct  the tests since the distinction sought for 
here is subtle. 

We have not  applied the present test to the case of  
dibenzyl disulphide for the following two reasons:  
(i) The intensity da ta  for Mo K~ radiat ion,  which are 
necessary for this compound,  are not  available;  and 
(ii) The effect of  the presence of  heavy atoms is not  
taken into account  in the present theory. When atoms 
of  different scattering powers are present in the unit 
cell, the other  symmetry elements of  the space g~oup 
also affect the intensity distribution significantly (Fos- 

Table 2. Theoretical values of  the fractional number of reflexions whose y values lie in the interval yl to 1.50 
for the ideally centrosymmetric crystal and a non-centrosymmetric crystal with a degree of centrosymmetry 

The entries in the row against yl are the values of the lower limit y~ of the interval for y and those in the row against C are the 
theoretical values of the fractional number of reflections with y values in the interval (y, to 1.50) for the ideally centrosymmetric 
crystal. Those in the row against NC are the corresponding values for the non-centrosymmetric crystal with a degree of centro- 
symmetry which is denoted by the parameter (IArl) in column 1. 

([Ar]) 
sin 0/~. 0.3 0"4 0.5 0"6 0.7 0.8 0"9 1.0 1.1 1.2 

0.04 Yl 0.05 0"06 0.08 0.09 0"11 0.12 0"14 0"15 0.17 0.18 
C 82.7 81.9 80.3 79.5 77.9 77.1 75.5 74.7 73-1 72.4 
NC 84.3 84.1 83.1 82.9 81.8 81.6 80.6 80.4 79.3 79.1 

0"05 yt 0"06 0.08 0"10 0.12 0.14 0.15 0.17 0.19 0.20 0.22 
C 81.9 80.3 78.7 77.1 75"5 74-7 73.1 71.6 70.8 69.2 
NC 84"0 83.1 82.2 81.3 80.4 80"4 79.5 78.6 78.5 77-6 

0.06 y, 0.07 0.09 0.12 0.14 0.16 0-18 0.20 0.22 0.24 0.25 
C 81.1 79.5 77"1 75.5 73"9 72.4 70"8 69"2 67.7 66.9 
NC 83.6 82.9 81.3 80.6 79.8 79.1 78.3 77.6 76.8 76"7 

0"07 y, 0"08 0"11 0.14 0"16 0"18 0"21 0"23 0.25 0"27 0.28 
C 80.3 77.9 75.5 73.9 72.4 70.0 68.4 66-9 65.4 64.6 
NC 83"2 81.8 80"4 79"8 79.2 77"8 77.2 76"5 75"8 75"8 

0.08 yt 0"09 0.12 0.15 0.18 0.20 0.23 0.25 0.27 0.29 0.31 
C 79.5 77.1 74.7 72.4 70"8 68.4 66"9 65.4 63-8 62.3 
NC 82"9 81'6 80"4 79"1 78"6 77"3 76"7 76"1 75"5 74"8 

0'09 Yl 0'10 0'14 0'17 0"20 0"23 0'25 0"28 0"30 0"32 0"33 
C 78.7 75.5 73.1 70.8 68.4 66.9 64.6 63.1 61.5 60.8 
NC 82.5 80-6 79.5 78.3 77.2 76.7 75.5 75.0 74.4 74.5 

0.10 yt 0.12 0.15 0.19 0.22 0.25 0.27 0.30 0.32 0-34 0-35 
C 77.1 74.7 71.6 69.2 66.9 65.4 63.1 61.5 60-0 59.3 
NC 81.3 80.4 78.6 77.6 76.5 76.1 75.0 74.5 73.9 74.0 

0.12 Yt 0.14 0.18 0.22 0.25 0.28 0.31 0.33 0.35 0.37 0.38 
C 75.5 72.4 69.2 66.9 64.6 62.3 60.8 59.3 57.8 57.0 
NC 80.6 79.1 77.6 76.7 75.8 74.8 74.5 74.0 73.4 73.4 

0.15 y~ 0.17 0.22 0.26 0.30 0.33 0.35 0.38 0.39 0.40 0.41 
C 73.1 69.2 66.1 63.1 60.8 59.3 57.0 56.3 55.6 54.8 
NC 79.5 77.6 76.3 75.0 74.2 74.0 72.9 73.0 73.0 72.8 

0.20 Yl 0.22 0.27 0.32 0.35 0.38 0.40 0.41 0.42 0.43 0.43 
C 69.2 65.4 61.5 59.3 57.0 55.6 54.8 54.1 53.4 53.4 
NC 77"6 76.1 74.5 74.0 73.2 72.8 72.8 72.5 72.1 72.3 
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ter & Hargreaves, 1963). Thus to study dibenzyl disul- 
phide a more exact theory taking into account the 
other symmetry elements of the relevant space groups 
would be needed. Such a theory is under consideration. 

One of the authors (V.P.) would like to thank the 
University Grants Commission, India, for financial as- 
sistance. 

APPENDIX 

Evaluation of the mean and variance of A 

We shall evaluate the mean and variance of the real 
N/2 

part ,4(= y. A j) of (1) in terms of those of the ,4j's 
j= l  

as they are required for obtaining the pdf of ,4. Since 
the expectation of the sum is the sum of the expecta- 
tions 

N/2 

( A ) =  ~ (AI) (I1) 
./=1 

where Aj can be shown to be [see equation (1)] 

Aj =fj[cos ~0j(1 + cos V:) + sin ~0~ sin ~'A. (I2) 

Since the Aj's arise from contributions from different 
atoms, they can be treated as independent random 
variables and hence we have 

N/2 

a~= Z a~ (13) 
.i=l 

where a~ is the variance of Aj. Since the vector Arj 
can be taken to be independent of the position of atom 
j, it follows that ~0j and ~j of equation (I2) are inde- 
pendent random variables and hence for any func- 
tions of ~0j and ~,j we have 

(A(•,) fz(v,))=(A(fa,))  (f2(v,)).  (I4) 

Assuming that coordinates xj ,y: ,z j  of atom j are 
independent random variables uniformly distributed 
in the interval 0 to 1, we can take ~0j to be a random 
variable distributed uniformly in the interval 0 to 2zc 
(Hauptman & Karle, 1953; Foster & Hargreaves, 
1963). Thus we have 

0 if p = l  
(cos" ~oj)=(sin p 9J)= ½ if p = 2 .  (15) 

Since Arj is assumed to obey the Gaussian distribution 
which is symmetric it follows that (Luzzati, 1952) 

(sin Vj) = 0.  (I6) 

We shall, following Luzzati (1952), define a parameter 
D to be 

D =  (cos V,~)= (cos 2ni l .  Arj) .  (17) 

From equation (I2) and the results in (14) to (17) we 
obtain (A j ) = 0  which when substituted in (I1) yields 

( A ) = 0 .  (I8) 

Since (A j )=0 ,  it also follows that a j-z-(A~). From 
equation (12) and the results in (I4) to (I7) we thus 
obtain 

a~ = (A~) =f~(1 + D).  (I9) 

Substituting (I9) in (13) we thus obtain 

m2 (1 + D) 
tr2=(1 + D) ~ f ~ -  

:=l 2 
where 

tr~v (I10) 

N 
a ~ = ~ f ~ .  (I l l )  

J=l 

It may be noted here that D will be independent of 
the index j since all the Arj's obey the same Gaussian 
law. 
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